Exercises in Fall 2019 PDE course

Xuezhang Chen*

[∗]Department of Mathematics & IMS, Nanjing University, Nanjing 210093, P. R. China

1 General questions

Question 1.1 (Giraud). Let Ω be a bounded open set of \mathbb{R}^n and let $f(x, y)$ and $g(x, y)$ *be continuous functions on* $\Omega \times \Omega \setminus \{x = y\}$ *, which satisfy*

$$
|f(x,y)| \le C|x-y|^{\alpha-n}
$$
 and $|g(x,y)| \le C|x-y|^{\beta-n}$,

where $0 < \alpha, \beta < n$ *. Then*

$$
h(x,y) = \int_{\Omega} f(x,z)g(z,y)dz
$$

is continuous in $\Omega \times \Omega \setminus \{x = y\}$ *and*

(a)
$$
|h(x,y)| \le C|x-y|^{\alpha+\beta-n}
$$
 if $\alpha+\beta < n$;

- *(b)* $|h(x, y)| \leq C(1 + |\log|x y||)$ *if* $\alpha + \beta = n$;
- *(c)* $|h(x, y)| \leq C$ *if* $\alpha + \beta > n$.

Hint. Use the decomposition of Ω *:* $B_{\rho}(x) \cap \Omega$ *,* $[B_{3\rho}(y) \setminus B_{\rho}(x)] \cap \Omega$ *and* $\Omega \setminus B_{3\rho}(y)$ *, with* $2\rho = |x - y|$.

Question 1.2. *Let* $0 < s < 1$ *and* $\nu \geq 0$ *, then*

$$
\int_{\mathbb{R}^n} \frac{dy}{|x-y|^{n-2s}(1+|y|)^{\nu+4s}} \leq C \frac{\log(2+|x|)}{(1+|x|)^{\min\{n-2s,\nu+2s\}}}.
$$

Question 1.3. Let A, B be real symmetric $n \times n$ matrices with eigenvalues $\{\lambda_i\}$ and {µi} *satisfying:*

$$
\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0; \quad \mu_1 \leq \mu_2 \leq \cdots \leq \mu_n,
$$

then $\text{tr}(AB) \ge \sum_{i=1}^n \lambda_i \mu_i$ *.*

^{*}X. Chen: xuezhangchen@nju.edu.cn;

Question 1.4 (Hadamard identity). Let Ω be a domain in \mathbb{R}^n and $f \in C^2(\overline{\Omega}; \mathbb{R}^n)$, denote by B_{ij} the algebraic cofactor of the element $\frac{\partial f^i}{\partial x^j}, 1 \leq i, j \leq n$ in the determent $J_f(x)$ *. Then there holds*

$$
\sum_{i=1}^{n} \frac{\partial}{\partial x^{j}} B_{ij}(x) = 0, \text{ for each } i = 1, \cdots, n.
$$

(Notation. i: row index; j: column index)

2 The wave equation

Question 2.1. Let $\Omega = \{(x, y) \in \mathbb{R}^2; 0 < x < a, 0 < y < b\}$, and use separation of *variables to solve the initial boundary value problem*

$$
\begin{cases}\n\partial_t^2 u = \partial_x^2 u + \partial_y^2 u & \text{in } \Omega \times (0, \infty); \\
u(x, y, t) = 0 & \text{on } \partial\Omega \times (0, \infty); \\
u(x, y, 0) = \sin \frac{\pi x}{a} \sin \frac{2\pi y}{b}, \ \partial_t u(x, y, 0) = 0 & \text{in } \Omega.\n\end{cases}
$$

Question 2.2. Let $B_1^+ = \{x = (x', x_n) \in \mathbb{R}^n; |x| < 1, x_n > 0\}$ and $\lambda \in \mathbb{R}$, solve the *following eigenvalue problem:*

$$
\begin{cases}\n-\Delta u = \lambda u & \text{in } B_1^+; \\
u = 0 & \text{on } \partial^+ B_1^+; \\
\frac{\partial u}{\partial x_n} = 0 & \text{on } \partial' B_1^+.\n\end{cases}
$$

Question 2.3. *Find a formula for the solution* $v(x,t) = v(x_1, x_2, t)$ *of the Cauchy problem for the two dimensional Klein-Gordon equation:*

$$
\begin{cases} \partial_t^2 v = a^2 \Delta v - m^2 a^2 v & \text{for } x \in \mathbb{R}^2, t > 0; \\ v(x, 0) = \varphi(x), & \partial_t v(x, 0) = \psi(x), & \text{for } x \in \mathbb{R}^2; \end{cases}
$$

where a, m *are two positive constants.*

Question 2.4. *If* $\varphi, \psi \in C_c^{\infty}(\mathbb{R}^n)$ *and* $n \geq 1$ *, then the solution of*

$$
\begin{cases} \partial_t^2 u = \Delta u \quad \text{for } x \in \mathbb{R}^n, t > 0; \\ u(x, 0) = \varphi(x), \ \ \partial_t u(x, 0) = \psi(x), \quad \text{for } x \in \mathbb{R}^n; \end{cases}
$$

has the following estimate: there exists a positive constant C *such that*

$$
|u(x,t)| \le \frac{C}{t^{\frac{n-1}{2}}} \quad \text{for any } x \in \mathbb{R}^n, t > 0.
$$

If $n = 3$ *and let* $\xi = t + r$, $\eta = t - r$ *, where* $r = |x|$ *, then*

$$
|\partial u| \le ct^{-1}, \quad |\partial_\eta u| \le ct^{-1}, \quad |\partial_\xi u| \le Ct^{-2} \quad \text{as } t \to \infty
$$

and

$$
|\partial u| \le \frac{C}{(1+r)(t-r)^{\frac{3}{2}}} \quad \text{near } t = r.
$$

3 The heat equation

Question 3.1. *Formally check that*

$$
u(x,t) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k} \frac{d^k}{dt^k} e^{-\frac{1}{t^2}}
$$

satisfies $\partial_t u = \partial_x^2 u$ for $x \in \mathbb{R}$, $t > 0$, and $u(x, 0) = 0$ for $x \in \mathbb{R}$. In other words, we need *to prove the convergence of the infinite series.*

Question 3.2. Apply the similarity method to the porous medium equation $\partial_t u = \Delta u^{\gamma}$ *for* $x \in \mathbb{R}^n, t > 0$, where $\gamma > 1$, to obtain the **Barenblatt**'s solution:

$$
u_{\gamma}(x,t) = t^{\alpha} \left(C - \frac{(\gamma - 1)\beta |x|^2}{2\gamma t^{2\beta}} \right)^{\frac{1}{\gamma - 1}},
$$

where C *is a positive constant,* $\beta = (n(\gamma - 1) + 2)^{-1}$ *and* $\alpha = n\beta$ *. Indeed, the above solution is also true for* $0 < \gamma < 1$ *and* $\gamma \neq \frac{n-2}{n}$ $\frac{n-2}{n}$, so, how about $\gamma = \frac{n-2}{n}$ $\frac{-2}{n}$?

Question 3.3. *Find a formula for the solution of the Cauchy problem*

$$
\begin{cases} \partial_t u = \Delta u - u, & x \in \mathbb{R}^n, t > 0; \\ u(x, 0) = \varphi(x), & x \in \mathbb{R}^n; \end{cases}
$$

where φ *is continuous and bounded. Is the solution bounded? Is it the only bounded solution? Furthermore, let* $\lambda \in \mathbb{R}$ *, can you write down an explicit formula of the solution to*

$$
\begin{cases} \partial_t u - \Delta u + \lambda u = f(x, t), & x \in \mathbb{R}^n, t > 0; \\ u(x, 0) = \varphi(x), & x \in \mathbb{R}^n. \end{cases}
$$

4 The Laplace equation

Question 4.1. Let $A(\varepsilon, 0) = \{x \in \mathbb{R}^n : 0 < \varepsilon < |x| < 1\}$ be an annulus in $\mathbb{R}^n, n \geq 2$. *Using the method of separation of variables to solve the following Steklov eigenvalue problem in* $A(\varepsilon, 0)$ *:*

$$
\begin{cases} \Delta u = 0 & \text{in } A(\varepsilon, 0); \\ \frac{\partial u}{\partial r} = \sigma u & \text{on } S_1; \\ -\frac{\partial u}{\partial r} = \sigma u & \text{on } S_\varepsilon; \end{cases}
$$

where $\sigma \in \mathbb{R}_+$ *are the Steklov eigenvalues.*

Question 4.2. Let $A(r, 0) = \{x \in \mathbb{R}^n : 0 < \varepsilon < |x| < 1\}$ be an annulus in $\mathbb{R}^n, n \geq 3$. *Find a solution to*

$$
\begin{cases} \Delta u = 0 & \text{in } A(\varepsilon, 0); \\ u(x) = a, \quad x \in S_{\varepsilon}; \quad u(x) = 1, \quad x \in S_1; \end{cases}
$$

where $a \in \mathbb{R}$ *and* $a > 1$ *. Let* $v = u|_{\partial A(\varepsilon,0)}$ *, find an optimal constant* $\varepsilon_0 \in (0,1)$ *such that*

$$
\frac{\left(\int_{A(\varepsilon,0)} |u(x)|^{\frac{2n}{n-2}} dx\right)^{\frac{1}{n}}}{\left(\int_{\partial A(\varepsilon,0)} |v(x)|^{\frac{2(n-1)}{n-2}} d\sigma\right)^{\frac{1}{n-1}}} > \frac{(\text{Vol}(B_1))^{\frac{1}{n}}}{(\text{Vol}(\partial B_1))^{\frac{1}{n-1}}}
$$
(4.1)

for all $0 < r < \varepsilon_0$ *?[Open problem.]*

Hint. First, it is impossible that the inequality [\(4.1\)](#page-3-0) *holds for all* $0 < r < 1$ *, i.e.* $\varepsilon_0 = 1$ *. Next, one of possible new ways is to choose some suitable boundary data, and solve the harmonic function by separation of variables. How about using some Steklov eigenfunction in Question [4.1](#page-3-1) or its linear combination with the above test function? Keep trying it.*

Question 4.3. Let $\Omega = \{(x, y) \in \mathbb{R}^2; 0 < x < a, 0 < y < b\}$. Solve the following *eigenvalue problem by separation of variables:*

$$
\begin{cases} \partial_x^2 u + \partial_y^2 u + \lambda u = 0, & 0 < x < a, 0 < y < b; \\ u(0, y) = u(a, y) = 0; \\ u(x, 0) = u(x, b) = 0. \end{cases}
$$

Question 4.4. *Show that the bounded solution of the Dirichlet problem of Poisson equation in a half-space is unique. Give unbounded counterexamples.*

Question 4.5. Let u be a harmonic function in \mathbb{R}^n , $n \geq 3$, then the frequency function

$$
\mathcal{F}_u(r) := \frac{r^{2-n} \int_{B_r} |\nabla u|^2 \mathrm{d}x}{r^{1-n} \int_{\partial B_r} u^2 \mathrm{d}\sigma}
$$

is non-decreasing in $(0, \infty)$ *.*

Question 4.6. Let u be a harmonic function in \mathbb{R}^n , $n \geq 3$, then there holds

$$
\int_{\partial B_1(0)} u(R_1x)u(R_2x)\mathrm{d}\sigma = \int_{\partial B_1(0)} u^2(\sqrt{R_1R_2}x)\mathrm{d}\sigma
$$

for $R_1, R_2 > 0$ *. Hint: Use Poisson formula on the ball and symmetry of the ball.*

Question 4.7 (The unique continuation for harmonic functions). *Let* Ω *be an open connected subset of* \mathbb{R}^n , $n \geq 3$ *. Suppose that* $u \in C^2(G)$ *and* $\Delta u = 0$ *in G*, *and* $u = 0$ *in an open set* $\Omega \subset G$ *, then* $u = 0$ *in* G *.*

Question 4.8 (Bôcher). A positive harmonic function u in a punctured ball $B_1(0)\setminus\{0\}$ *must be of the form*

$$
\begin{cases}\n-a\log|x| + h(x) & \text{if } n = 2, \\
a|x|^{2-n} + h(x) & \text{if } n \ge 3,\n\end{cases}
$$

where a *is a nonnegative constant and* $h(x)$ *is a harmonic function in* B_1 *.*

Question 4.9. A harmonic function in a punctured ball $\overline{B_1}(0) \setminus \{0\}$ which is bounded *in* $B_1(0)$ *, must be smooth in* $B_1(0)$ *.*

Question 4.10. *For a multi-index* α *with* $|\alpha| = 2$, *let P be a homogeneous harmonic polynomial of degree* 2 *with* $D^{\alpha}P \neq 0$. Choose $\eta \in C_c^{\infty}([-2,2])$ *with* $\eta = 1$ *when* $|x| < 1$, set $t_k = 2^k$, and let $c_k \to 0$ as $k \to \infty$, with $\sum_{k=0}^{\infty} c_k$ divergent. Define

$$
f(x) = \sum_{k=0}^{\infty} c_k \Delta(\eta P)(t_k x).
$$

Show that f is continuous but that $\Delta u = f$ does not have a C^2 solution in any neighbor*hood of the origin.*

5 Open problems

Question 5.1. *Is it possible to find a special solution of the following PDE (one may assume the radial symmetry of the solution and solves the corresponding ODE):*

$$
\Delta^2 u^{\frac{n-4}{n+4}} - \rho_1 u - \rho_2 x \cdot \nabla u = 0, \ \ u > 0 \ \text{in } \ \mathbb{R}^n. \tag{5.1}
$$

where $n \geq 5$ *and* ρ_1 , ρ_2 *are constant. Furthermore, is it possible to find a special solution to*

$$
\partial_t u + \Delta^2 u^\gamma = 0
$$
 for $(x, t) \in \mathbb{R}^n \times (0, T)$,

where $\gamma > 0, T > 0$ *and* $n \geq 5$ *.*

Question 5.2. *Let* $k \in \mathbb{N}, \alpha \in \mathbb{R}_+$ *and set* $Q = 1 + k(\alpha + 1)$ *, to solve the following ODE* of $\Phi = \Phi(t)$ *:*

$$
t(t+1)\Phi'' + \frac{k+1}{2}(2t+1)\Phi' + \frac{Q(Q-2)}{4(\alpha+1)^2}\Phi + \frac{1}{(\alpha+1)^2}\Phi^{\frac{Q+2}{Q-2}} = 0.
$$